[docs]defreconstruct(seed,mask=None,method='dilation',selem=None,offset=None):"""Performs a morphological reconstruction of an image. Arguments --------- seed : array Seed image to be dilated or eroded. mask : array Maximum (dilation) / minimum (erosion) allowed method : {'dilation'|'erosion'} The method to use. selem : array Structuring element. offset : array or None The offset of the structuring element, None is centered. Returns ------- reconstructed : array Result of morphological reconstruction. Note ---- Reconstruction uses a seed image, which specifies the values to dilate and a mask image that gives the maximum allowed dilated value at each pixel. The algorithm is taken from [1]_. Applications for greyscale reconstruction are discussed in [2]_ and [3]_. Effectively operates on 2d images. Reference: .. [1] Robinson, "Efficient morphological reconstruction: a downhill filter", Pattern Recognition Letters 25 (2004) 1759-1767. .. [2] Vincent, L., "Morphological Grayscale Reconstruction in Image Analysis: Applications and Efficient Algorithms", IEEE Transactions on Image Processing (1993) .. [3] Soille, P., "Morphological Image Analysis: Principles and Applications", Chapter 6, 2nd edition (2003), ISBN 3540429883. """ifmaskisNone:mask=seed.copy();ifseed.shape!=mask.shape:raiseValueError('Seed shape % and mask shape %r do not match'%(seed.shape,mask.shape))ifmethod=='dilation'andnp.any(seed>mask):raiseValueError("Intensity of seed image must be less than that ""of the mask image for reconstruction by dilation.")elifmethod=='erosion'andnp.any(seed<mask):raiseValueError("Intensity of seed image must be greater than that ""of the mask image for reconstruction by erosion.")try:fromskimage.morphology._greyreconstructimportreconstruction_loopexceptImportError:raiseImportError("_greyreconstruct extension not available.")ifselemisNone:selem=np.ones([3]*seed.ndim,dtype=bool)else:selem=selem.copy()ifoffsetisNone:ifnotall([d%2==1fordinselem.shape]):ValueError("Footprint dimensions must all be odd")offset=np.array([d//2fordinselem.shape])# Cross out the center of the structural_elementselem[tuple(slice(d,d+1)fordinoffset)]=False# Make padding for edges of reconstructed image so we can ignore boundariespadding=(np.array(selem.shape)/2).astype(int)dims=np.zeros(seed.ndim+1,dtype=int)dims[1:]=np.array(seed.shape)+2*paddingdims[0]=2inside_slices=tuple(slice(p,-p)forpinpadding)# Set padded region to minimum image intensity and mask along first axis so# we can interleave image and mask pixels when sorting.ifmethod=='dilation':pad_value=np.min(seed)elifmethod=='erosion':pad_value=np.max(seed)images=np.ones(dims,dtype=seed.dtype)*pad_valueimages[(0,)+inside_slices]=seedimages[(1,)+inside_slices]=mask# Create a list of strides across the array to get the neighbors within# a flattened arrayvalue_stride=np.array(images.strides[1:])/images.dtype.itemsizeimage_stride=images.strides[0]//images.dtype.itemsizeselem_mgrid=np.mgrid[[slice(-o,d-o)ford,oinzip(selem.shape,offset)]]selem_offsets=selem_mgrid[:,selem].transpose()nb_strides=np.array([np.sum(value_stride*selem_offset)forselem_offsetinselem_offsets],np.int32)images=images.flatten()# Erosion goes smallest to largest; dilation goes largest to smallest.index_sorted=np.argsort(images).astype(np.int32)ifmethod=='dilation':index_sorted=index_sorted[::-1]# Make a linked list of pixels sorted by value. -1 is the list terminator.prev=-np.ones(len(images),np.int32)next=-np.ones(len(images),np.int32)prev[index_sorted[1:]]=index_sorted[:-1]next[index_sorted[:-1]]=index_sorted[1:]# Cython inner-loop compares the rank of pixel values.ifmethod=='dilation':value_rank,value_map=rank_order(images)elifmethod=='erosion':value_rank,value_map=rank_order(-images)value_map=-value_mapstart=index_sorted[0]reconstruction_loop(value_rank,prev,next,nb_strides,start,image_stride)# Reshape reconstructed image to original image shape and remove padding.rec_img=value_map[value_rank[:image_stride]]rec_img.shape=np.array(seed.shape)+2*paddingreturnrec_img[inside_slices]
[docs]defgrey_reconstruct(source,mask=None,sink=None,method=None,shape=3,verbose=False):"""Calculates the grey reconstruction of the image Arguments --------- source : array The source image data. method : 'dilation' or 'erosion' or None The mehtjod to use, if None return original image. shape : in or tuple Shape of the strucuturing element for the grey reconstruction. verbose : boo; If True, print progress info. Returns ------- reconstructed: array Grey reconstructed image. Note ---- The reconstruction is done slice by slice along the z-axis. """ifverbose:timer=tmr.Timer();hdict.pprint(head='Grey reconstruction',method=method,shape=shape)ifmethodisNone:returnsource;ifsinkisNone:sink=np.empty(source.shape,dtype=source.dtype);# background subtraction in each sliceselem=se.structure_element(form='Disk',shape=shape,ndim=2).astype('uint8');forzinrange(source.shape[2]):#img[:,:,z] = img[:,:,z] - grey_opening(img[:,:,z], structure = structureElement('Disk', (30,30)));#img[:,:,z] = img[:,:,z] - morph.grey_opening(img[:,:,z], structure = self.structureELement('Disk', (150,150)));sink[:,:,z]=source[:,:,z]-reconstruct(source[:,:,z],mask=mask[:,:,z],method=method,selem=selem)ifverbose:timer.print_elapsed_time('Grey reconstruction');returnsink