MultipleComparisonCorrection#
Correction methods for multiple comparison tests.
- correct_p_values(pvalues, method='BH')[source]#
Corrects p-values for multiple testing using various methods.
Arguments
- pvaluesarray
List of p values to be corrected.
- methodstr
Optional method to use: ‘BH’ = ‘FDR’ = ‘Benjamini-Hochberg’, ‘B’ = ‘FWER’ = ‘Bonferoni’.
Returns
- qvaluesarray
Corrected p values.
References
Notes
Modified from http://statsmodels.sourceforge.net/ipdirective/generated/scikits.statsmodels.sandbox.stats.multicomp.multipletests.html.
- estimate_q_values(pvalues, m=None, pi0=None, verbose=False, low_memory=False)[source]#
Estimates q-values from p-values.
Arguments
- pvaluesarray
List of p-values.
- mint or None
Number of tests. If None, m = pvalues.size
- pi0float or None
Estimate of m_0 / m which is the (true null / total tests) ratio. If None estimation via cubic spline.
- verbosebool
Print info during execution
- low_memorybool
If true, use low memory version.
Returns
- qvaluesarray
The q values.
Notes
The q-value of a particular feature can be described as the expected proportion of false positives among all features as or more extreme than the observed one.
The estimated q-values are increasing in the same order as the p-values.
References
modified from nfusi/qvalue